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EXACT SOLITON SOLUTIONS OF THE GENERALIZED EVOLUTION EQUATION 
OF WAVE DYNAMICS* 

N.A. KUDRYASHOV 

A Backlund transformation is proposed for the generalized evolution equation of gas 
dynamics, by means of which exact soliton solutions of this equation are obtained. 

In recent years, a non-linear fourth-order equation has been used to describe a number 

of wave processes. In the general case, this takes the form 

(0.1) 

Here a, fl and v are constant coefficients, u (Z> t) is a function that characterizes the 

physical process: mixing, the thickness of a film, concentration, etc. 

With u#O, fi= y= 0 Eq.(O.l) is the Burgers equation, which, in the simplest case, models 

the formation of shock waves in gas dynamics /l/. Using a Cole-Hopf transformation /2, 3/ 

u, (3, t) = -2aaln F/as (0.2) 

the Burgers equation is transformed into a linear heat conduction equation with respect to 

the function F(s,t). When a=y=O,fi+O Eq.(O.l) is well-known as the Korteveg-de Vries (KdV) 

equation, which describes solitons (localized non-linear waves) /4/. 

Using the Miura transformation /5, 6/ 

11 (z, t) = 12fi@ln F/W (0.3) 

the KdV equation reduces to an equation for F(s,f) which has a quadratic form, from which 

Hirota /7/ found exact single-andmulti-soliton solutions of the KdV equation. 

Below, we will consider Eq.(O.l) with values of the coefficients a, b and y different 

from zero. 

1. The Backlund transformation for Eq.(C.l). We write the solution of (0.1) in 

the form of the following sum: 

u (z, t) = ff uj (2, t) Fj-3 (J, t) 
j=o 

(1.1) 

Substituting (1.1) into (0.1) and equating terms with the same powers of F (z,t) we get 

a series of equalities: 

u0 = --1ZOyF,3, u1 = -15fZxZ + 180yF,F,, (1.2) 
us = (15/76)@Vy - 16a)F, + 15pFzx - 6OyF,,, 

We can write the equation that contains the coefficient %l (I? t) and partial derivatives 

of F (r, t) (denoted by Ft. F,, F, etc.) in the form 

F,+u,F,+$+-7+,+&(&16a)F,,+ (1.3) 

5l3F,, - 15~Fxxm - q fiF:,F;' + 30yF,,F,,,F;’ - 

15yF:xF;a= 0 
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We can set up a recurrence formula for finding the coefficients of Uj (2, 1) With j .$ * . 
(*N-A. Kudryashov, The Bucklund transformation for the viscoelastic wave equation in dispersive 
media: Preprint 007-87. MIFI, Moscow, 1987.! It turned out, however, that uF1 isnot determined 
from this formula, and hence we must put uj -m 0 for j ‘-4. Setting ~1~ 0 ITI the recur- 
rence formula and taking account of expression (1.2), we get an equation for i,‘ (.?, 1): 

Since Uj (I, t) = 0 with j 1-4, taking (1.2) into account we can write the solution of 
(0.1) by means of the formula 

The last equation of (1.5) for the coefficient ?J,(e,f) is identical in form with the 

initial Eq.(O.l), and so (1.6) can be used to transform the solution of (0.1). 
~orthe Burgers-Korteveg-de Vries(BKdV) equation, which is obtained from (O.l), if a# 0, 

B#O,Y==O the transformation of the equations (analogous to (1.6)) takes the form 

As also when ?=#=a, the coefficients uj = 0 when j 3; 4. The coefficient U3 (Ic, t) is 

connected with F(.z,t) by the following equation: 

In this case, the coefficient +(z,t) also obeys (0.1) if we set y = 0. When c$ := CJ and 

uajs, t) =O, transformation (1.7) becomes the Miura transformation (1.3) for the KdV equation. 

2. Exact solutions of the BKdV equation. Using (1.71, we will find a solution of 
the BKdV equation (Eq.CO.1) with y = 0). 

With u,(z,1) = 0, we get an equation for F(r,t), which can be represented by setting 
the quadratic form equal to zero 

3BG, -G,G,+'F~ ++&$+O (2.1) 

G, = F', - aCyX i PP.,,, 

G,== Is;, + -$ F,,,, G,=== FE,-- F,E‘,, 

The left-hand side of (2.1) with a = 0 is identical with the quadratic form that was 
applied to determine the soliton solutions of the KdV equation /5, 6/. 

The function F (z, t) that obeys the conditions G, = c,,, G, = 0, G,= O(c, is a constant) 
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is a solution of Eq.(2.1). Setting co = 0, we find 

F (a, t) = Cl + c‘@"--~~ 

k=-+, 
60,s 

0=1238” 

(2.2) 

(2.3) 

where c, and c, are constants. 
Substituting (2.2) into (1.7) with u,(x,t) = 0 and setting Cl =^Cc2 = 1, we can write the 

solution of the BKdV equation in the form 

U(LC, t) = V,uk fUa (3, t) + 2U (2, t) - 31 

U(x, t) = th Pi, (h - wt)] 
(2.4) 

The equation we have obtained has the form of a shock-wave, which is characteristic for 
solutions of the Burgers equation. As was proved in /8/, the BKdV equation has shock-wave 
solutions with monotonic profiles (for a> a,) 
(2.41 we have a, = ~f0.96~, 

and oscillatory profiles (for (a< a*). For 
which corresponds to a monotonic profile of the shock-wave front. 

Note that if we immediately look for a solution of (2.1) in the form of (2.2) with un- 
knowns k, o, then as a result of the substitution into (2.1) we obtain the values (2.3) for 
k and w. Analogous values of k and w are obtained if we substitute (2.2) into (1.8) and 
(1.91, having set u,(x,t)=O in (1.8). 

3. Solution of Eq.(O.l) for p '0, a+O, y+O. For j3=0 and u,jx, t)i= 0, sub- 
stituting (1.6) into (0.1) we obtain the result that the following cubic form is equal to zero: 

5yaFG, - 30yaG, f yL’G, + + L’G, + yL3G, = 0 

G=F--aF 
4 t 19 3% 

G,=+F-yF,, 

G,=F F x xxxsx + 3FJ,,,,-- 4&z 

G, =2F F F 2 xx xx_% - FxaF_., - F3,, 

The constant of integration is taken to be equal to zero in (3.1). It can be seen from 
the cubic form (3.1) that the function F(x,t) is a solution of (3.1) if it obeys the con- 
ditions G4 = 0, G, = cQ, G, = G* = G,= 0 (cg is a constant). These conditions are satisfied 
for (2.2) with 

k = f ?~la/(~Sy), w = (30119)ak* (3.2) 

Setting c1 and c1 =,I and substituting (2.2) and (3.2) into (1.6), with p = 0 we find 
a solution of Eq.CO.1) 

(3.3) 

For cr,= -1 and y=--'i, solution (3.3) is identical with the Kuramoto solution that 
has been proposed for describing concentration waves in chemical reactions /9/. Expressions 
(3.3) is also known as an exact soliton solution of the equation that describes the sliding 
of a film down an inclined plane /lo/. Expression (2.2), (3.21, for F (x, f) obeys the systemof 
Eqs.Cl.3) and 11.4) in which u,(z,t) = 0 and fi =O. This system may also be used to find 
the values of k and o in expression (2.2) for F(r,t). 

For w we obtain the second relationship in (3.21, and for k we find 

k,,, = +l/Nd(lSy), k,*, = -t_ifa/(19y) (3.4) 

The values of k, and k, lead to the solution cited above. 

4. Solution of Eq.(O.l) for a+O,@#O, y+O, The substitution of (1.6) with 
ug (r, t) = 0 into (0.1) leads to a cumbersome expression. So we will look for F(r,t) in the 
form of (2.2). Substituting (2.2) into (1.3) and (1.4) with ZL~(.E,~) = 0, we get an algebraic 
equation for m and k: 
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We find ic,, . . . k.* from the quartic Eq.(4.2). From.the first expression in iL.5), taking 
account of (2.2) and (4.2), we find 

The algebraic equation for k that is obtained from the second equation in (1.5) is a 
consequence of (4.2) and (4.3). 

Thus, the function &'(r, t), defined by (2.2) with w and k calculated from (4.I)-(4.3) 
is a solution of the system of Eqs.(1.3)-(1.6). Since expressions (1.3)-(1.6) are obtained 
as a result of substituting (1.1) into (0.1) and equating terms with the same powers of F(z,t), 

it follows from the fact that (1.3)-(1.6) vanish that the function (1.6)‘ where F (.C, t) is 
determined from (2.2) with o and k calculated from (4.1)-(4.3), is a solution of the initial 
Eq.iO.1). 

It can be seen from (4.1)-(4.3) that the values of o) and k effectively depend on the 
parameters a, p and 1'. 

The solution u(z,t) of the initial Eq.cO.1) is found if we substitute (2.2) into (1.6). 
Setting c1 = c,, =I in (2.2), as we did before, and substituting F ($3 1) into (1.6), we find 

Here k,, is the value of one of the real roots of the system of Eqs.(4.2), (4.3) and 
w0 = ‘0 (k,) is calculated from (4.1). 

Consider an actual analytic solution of (0.1). For 8 = 0 we obtain the result that 
Eq.cl.5) is a consequence of (1.3) and (1.4). From the algebraic Eq.(4.2) for k we obtain 
the values (3.4). As a result solution (4.4) becomes the Kuramoto solution (3.3). When 
fi" = f6ay, the left-hand side of (4.3) becomes zero, since here (1.5) is also a consequence 
of (1.3) and (1.4). From (4.11 and (4.2) we obtain 

0 
hi>,,:,., z I/-w, ‘,I = 3/c ffFqj(k? + c&y) 

For k, = I/aF ,wI1 = (11 (k,,) = 6~'y-~ , the solution u (2, t) of Eq.(O.l) is written in the 
form 

Solution (4.5) has a single maximum, which is equal to (ls@&)y'a:i,y. If (X -&&ii&&t)-+ &o, 
then u (.r,t)-+O. There are also other analytic solutions of (0.1). Equating the values of kz 
from (4.2) and (4.3) we obtain a quartic equation for @'I/G from which 

(4.6) 

We find the corresponding values of k from (4.2) : 

k,, z x 4 Jo k:,, $ = .i& qai(73y) (4.7) 

Substituting kz,2 and lt~, I into (4.1), we obtain 

fi,, = --CiO&((r7%,,), ('1, = -9Oa" l(73"y) (4.8) 

Expression (4.4) is an analytic solution of (0.1) with values of k and w corresponding 
to (4.7) and (4.8) provided that the coefficient /3 is connected with a. and y by (4.6). 

We will consider the solutions (4.4) and (4.5) that we have obtained for (0.1). Fig.1 
shows the solutions Ii p, ') in the travelling-wave coordinate system c =i X = @&,-'t with a -1 :' _: 
f and p- --it, 0, 4; real values of k, are fourid from formula (4.2) taking account of the 
equality (4.3). For P= ---/I(,@= I&+ the solution 1‘ (x, 0 has a single maximum corresponding 
to a solitary wave, which is completely smoothed as E -..I *= (in fact, even with /:I = 5). In 
the case i3= I), the solution has a maximum and a minimum. PJith fi -,'t the solution U (51 
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describes a solitary wave with one maximum and one level, which is equal to zero for fairly 
large 151. As the absolute value of fi increases, the wave becomes narrower. For the case 
$2= 16ay with a fixed value of y, as CI (and, consequently, 8) increases, the increase in 
wave amplitude and decrease inits width are also characteristic. The velocity of the 
solitary wave is proportional to a'jx, its value at g- 0, and the amplitude also --a '1%. Con- 
sequently, solitary waves with a large amplitude, described by (O.l), will travel with a high 
velocity. 

Analysis of the stability of the motion described by (0.1) with respect to small per- 
turbations U' - e'JiStWf leads to the following dispersion relationship: 

0 = -ig.@ - k2 (a- Y,@) (4.9) 

It can be seen from (4.7) that the amplitude of the wave with li= I/a3 neither increases 
nor decreases with time. This corresponds to a solitary wave described by solution (4.5). 
The long-wave oscillations (k<I/a'y) with a<0 and y<O in the system decay in accordance 
with (4.9), andthe short-wave oscillations (k > y'aiy), on the other hand, increase. This, 
however, does not contradict the existence of waves (4.4) with li+I/G, since such waves 
connect different levels of the solution u(I,~) as s-+*m. If we take into account the fact 
that the term au%% (a>O. u>O) is responsible for dissipating the enerqy of the wave, and the 
term ~~~~~~ is responsible 
the solution also leads to 

0 2 '( r 

Fig.1 
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__ 
for pumping it, the potential energies of the different levels in 
precisely the existence of waves with kJ;j”-aip. 

The modellinq of the propagation of a solitary wave, carried 
out on the basis of a numerical solution of (0.1) by changing to 
a difference scheme, has enabled us to establish that the solitary 
wave described by (4.5) interacts elastically with other inter- 
actions and, consequently, is a soliton. 

Comparison of the analytic solutions to (0.1) obtained in this 
paper with numerical solutions has demonstrated the good agreement 
of the results. 

The procedure for finding exact solutions of (0.1) can be 
generalized to the case of partial differential equations with 
non-linearity of BKdV or higher order, There are a number of facts 
that point to the existence of solutions, analogous to those 
proposed for (0.1) in this paper, for higher-order equations. 

The author thanks B.L. Rozhdestvenskii for discussing the 
results, and S.S. Kucherenko, V.V. Loborev, and V.M. Prostokishina 

for their help. 
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